鄂西山区日本落叶松树高曲线的研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

单华平(1975~) , 男 , 工程师 , 主要从事森林培育、生态保护工作。

通讯作者:

陈东升为通讯作者。

中图分类号:

S791. 223

基金项目:

国家自然基金项目“耦合遗传效应和环境变量的落叶松林分生长模型研究”(31971652)


study on Height curve of Larix kaempferi in western Hubei Mountainous Area
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    树高曲线是林分生长与收获模型的重要组成部分,是森林经营管理中需要参考的重要统计模型 。本研究以湖北 省恩施土家族苗族自治州(以下简称恩施州)建始县国有长岭岗林场的 日本落叶松人工林为研究对象, 以 8个应用广泛的 树高曲线方程作为备选模型,以不同林龄、不同立地条件、不同密度的固定样地每木检尺数据为基础,基于拟合优度指标选 取最优基础模型,构建鄂西山区 日本落叶松人工林的单木树高曲线模型 。结果表明,8个基础模型的拟合优度均在 0. 85以 上,其中 M3、M5模型拟合效果最优且较为接近(R2 = 0. 915),但 M3模型对大径级树高预测偏差明显,故选取 M5模型为 鄂西山区 日本落叶松人工林单木树高曲线模型,为其生长量调查及经营管理提供参考。

    Abstract:

    Tree height curve is an important part oFstand growth and harvest model and an important statistical model to be reFerred to Forest management. In this study, the Larix kaempferi plantation in changlinggang Forest Farm oFJianshi county oFHubei province were taKen as the research objects . Eight widely used tree height curve equations were used as alternative models , based on the measurement data oFeach tree in Fixed plots with diFFerent stand ages , site conditions and densities . Based on the goodness oFFit index, the optimum basic models were selected to construct the individual tree height curve model oFL. kaempferi plantation in western Hubei mountainous area . The research results indicated that, the goodness oFFit oFthe eight basic models were all above 0. 85, oFwhich M3and M5models had the best Fitting eFFect and were close to each other (R2 =0. 915) , but M3 model has obvious deviation in predicting the height oFlarge diameter trees , so M5model was selected as the single tree height curve model oFL. kaempferi plantation in the mountain area oF western Hubei, providing reFerence For its growth survey and management.

    参考文献
    相似文献
    引证文献
引用本文

单华平() 冯 骏() 翟丕斌() 侯义梅() 陈东升() 朱红军().鄂西山区日本落叶松树高曲线的研究[J].湖北林业科技,2023,4(4):1-4

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-02-07
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-15
  • 出版日期:
文章二维码